Package: fairness 1.2.2

fairness: Algorithmic Fairness Metrics

Offers calculation, visualization and comparison of algorithmic fairness metrics. Fair machine learning is an emerging topic with the overarching aim to critically assess whether ML algorithms reinforce existing social biases. Unfair algorithms can propagate such biases and produce predictions with a disparate impact on various sensitive groups of individuals (defined by sex, gender, ethnicity, religion, income, socioeconomic status, physical or mental disabilities). Fair algorithms possess the underlying foundation that these groups should be treated similarly or have similar prediction outcomes. The fairness R package offers the calculation and comparisons of commonly and less commonly used fairness metrics in population subgroups. These methods are described by Calders and Verwer (2010) <doi:10.1007/s10618-010-0190-x>, Chouldechova (2017) <doi:10.1089/big.2016.0047>, Feldman et al. (2015) <doi:10.1145/2783258.2783311> , Friedler et al. (2018) <doi:10.1145/3287560.3287589> and Zafar et al. (2017) <doi:10.1145/3038912.3052660>. The package also offers convenient visualizations to help understand fairness metrics.

Authors:Nikita Kozodoi [aut, cre], Tibor V. Varga [aut]

fairness_1.2.2.tar.gz
fairness_1.2.2.zip(r-4.5)fairness_1.2.2.zip(r-4.4)fairness_1.2.2.zip(r-4.3)
fairness_1.2.2.tgz(r-4.4-any)fairness_1.2.2.tgz(r-4.3-any)
fairness_1.2.2.tar.gz(r-4.5-noble)fairness_1.2.2.tar.gz(r-4.4-noble)
fairness_1.2.2.tgz(r-4.4-emscripten)fairness_1.2.2.tgz(r-4.3-emscripten)
fairness.pdf |fairness.html
fairness/json (API)
NEWS

# Install 'fairness' in R:
install.packages('fairness', repos = c('https://kozodoi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kozodoi/fairness/issues

Datasets:

On CRAN:

algorithmic-discriminationalgorithmic-fairnessdiscriminationdisparate-impactfairnessfairness-aifairness-mlmachine-learning

6.80 score 32 stars 1 packages 66 scripts 325 downloads 11 exports 150 dependencies

Last updated 2 years agofrom:62c5458020. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:acc_paritydem_parityequal_oddsfnr_parityfpr_paritymcc_paritynpv_paritypred_rate_parityprop_parityroc_parityspec_parity

Dependencies:askpassbase64encbrewbriobslibcachemcallrcaretclassclicliprclockcodetoolscolorspacecommonmarkcpp11crayoncredentialscurldata.tabledescdevtoolsdiagramdiffobjdigestdownlitdplyre1071ellipsisevaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsgertggplot2ghgitcredsglobalsgluegowergtablehardhathighrhtmltoolshtmlwidgetshttpuvhttr2iniipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeminiUIModelMetricsmunsellnlmennetnumDerivopensslparallellypillarpkgbuildpkgconfigpkgdownpkgloadplyrpraiseprettyunitspROCprocessxprodlimprofvisprogressrpromisesproxypspurrrR6raggrappdirsrcmdcheckRColorBrewerRcpprecipesremotesreshape2rlangrmarkdownroxygen2rpartrprojrootrstudioapirversionssassscalessessioninfoshapeshinysourcetoolsSQUAREMstringistringrsurvivalsyssystemfontstestthattextshapingtibbletidyrtidyselecttimechangetimeDatetinytextzdburlcheckerusethisutf8vctrsviridisLitewaldowhiskerwithrxfunxml2xopenxtableyamlzip

Tutorial to the fairness R package

Rendered fromfairness.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2021-03-27
Started: 2019-09-02