Package: fairness 1.2.2
fairness: Algorithmic Fairness Metrics
Offers calculation, visualization and comparison of algorithmic fairness metrics. Fair machine learning is an emerging topic with the overarching aim to critically assess whether ML algorithms reinforce existing social biases. Unfair algorithms can propagate such biases and produce predictions with a disparate impact on various sensitive groups of individuals (defined by sex, gender, ethnicity, religion, income, socioeconomic status, physical or mental disabilities). Fair algorithms possess the underlying foundation that these groups should be treated similarly or have similar prediction outcomes. The fairness R package offers the calculation and comparisons of commonly and less commonly used fairness metrics in population subgroups. These methods are described by Calders and Verwer (2010) <doi:10.1007/s10618-010-0190-x>, Chouldechova (2017) <doi:10.1089/big.2016.0047>, Feldman et al. (2015) <doi:10.1145/2783258.2783311> , Friedler et al. (2018) <doi:10.1145/3287560.3287589> and Zafar et al. (2017) <doi:10.1145/3038912.3052660>. The package also offers convenient visualizations to help understand fairness metrics.
Authors:
fairness_1.2.2.tar.gz
fairness_1.2.2.zip(r-4.5)fairness_1.2.2.zip(r-4.4)fairness_1.2.2.zip(r-4.3)
fairness_1.2.2.tgz(r-4.4-any)fairness_1.2.2.tgz(r-4.3-any)
fairness_1.2.2.tar.gz(r-4.5-noble)fairness_1.2.2.tar.gz(r-4.4-noble)
fairness_1.2.2.tgz(r-4.4-emscripten)fairness_1.2.2.tgz(r-4.3-emscripten)
fairness.pdf |fairness.html✨
fairness/json (API)
NEWS
# Install 'fairness' in R: |
install.packages('fairness', repos = c('https://kozodoi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kozodoi/fairness/issues
- compas - Modified COMPAS dataset
- germancredit - Modified german credit dataset
algorithmic-discriminationalgorithmic-fairnessdiscriminationdisparate-impactfairnessfairness-aifairness-mlmachine-learning
Last updated 2 years agofrom:62c5458020. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:acc_paritydem_parityequal_oddsfnr_parityfpr_paritymcc_paritynpv_paritypred_rate_parityprop_parityroc_parityspec_parity
Dependencies:askpassbase64encbrewbriobslibcachemcallrcaretclassclicliprclockcodetoolscolorspacecommonmarkcpp11crayoncredentialscurldata.tabledescdevtoolsdiagramdiffobjdigestdownlitdplyre1071ellipsisevaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsgertggplot2ghgitcredsglobalsgluegowergtablehardhathighrhtmltoolshtmlwidgetshttpuvhttr2iniipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeminiUIModelMetricsmunsellnlmennetnumDerivopensslparallellypillarpkgbuildpkgconfigpkgdownpkgloadplyrpraiseprettyunitspROCprocessxprodlimprofvisprogressrpromisesproxypspurrrR6raggrappdirsrcmdcheckRColorBrewerRcpprecipesremotesreshape2rlangrmarkdownroxygen2rpartrprojrootrstudioapirversionssassscalessessioninfoshapeshinysourcetoolsSQUAREMstringistringrsurvivalsyssystemfontstestthattextshapingtibbletidyrtidyselecttimechangetimeDatetinytextzdburlcheckerusethisutf8vctrsviridisLitewaldowhiskerwithrxfunxml2xopenxtableyamlzip
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Accuracy parity | acc_parity |
Modified COMPAS dataset | compas |
Demographic parity | dem_parity |
Equalized Odds | equal_odds |
fairness: Algorithmic Fairness Metrics | fairness |
False Negative Rate parity | fnr_parity |
False Positive Rate parity | fpr_parity |
Modified german credit dataset | germancredit |
Matthews Correlation Coefficient parity | mcc_parity |
Negative Predictive Value parity | npv_parity |
Predictive Rate Parity | pred_rate_parity |
Proportional parity | prop_parity |
ROC AUC parity | roc_parity |
Specificity parity | spec_parity |